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Our state of arousal can significantly affect our ability to make
optimal decisions, judgments, and actions in real-world dynamic
environments. The Yerkes–Dodson law, which posits an inverse-U
relationship between arousal and task performance, suggests that
there is a state of arousal that is optimal for behavioral perfor-
mance in a given task. Here we show that we can use online
neurofeedback to shift an individual’s arousal from the right side
of the Yerkes–Dodson curve to the left toward a state of improved
performance. Specifically, we use a brain–computer interface (BCI)
that uses information in the EEG to generate a neurofeedback
signal that dynamically adjusts an individual’s arousal state when
they are engaged in a boundary-avoidance task (BAT). The BAT is a
demanding sensory-motor task paradigm that we implement as an
aerial navigation task in virtual reality and which creates cognitive
conditions that escalate arousal and quickly results in task failure
(e.g., missing or crashing into the boundary). We demonstrate that
task performance, measured as time and distance over which the
subject can navigate before failure, is significantly increased when
veridical neurofeedback is provided. Simultaneous measurements
of pupil dilation and heart-rate variability show that the neuro-
feedback indeed reduces arousal. Our work demonstrates a BCI sys-
tem that uses online neurofeedback to shift arousal state and increase
task performance in accordance with the Yerkes–Dodson law.
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Why does walking across a brand-new carpet with a full cup
of coffee in one hand seem such a stressful and difficult

task? If the cup is filled with water instead of coffee, and/or if the
carpet is old and decrepit, why does the task seem less daunting
and less likely to result in a spill? The same can be said of the act
of walking across a balance beam, where the difference in our
performance (e.g., our speed across the beam and the likelihood
of a fall) is dramatically lower if the beam sits six inches off the
ground compared with when it is 60 feet up. Aphoristically, why
do “high stakes” lead to “grave mistakes”?
One possible explanation invokes the deleterious impact of

loss aversion on optimal cognitive control. Cognitive control
typically refers to a set of cortical processes and neuro-
modulatory functions that configures cognition for optimal per-
formance at a specific task (1, 2). When we are performing a
high-consequence task, with performance boundaries that are
critical—a spill of coffee out of the side of the cup that leads to
spousal rebuke or the slip of the foot off the edge of the balance
beam that leads to grave injury—arousal levels can increase
sharply and cognitive control can be drastically diminished.
A highly specialized scenario that represents an extreme case

of putting a high demand on sensory-motor cognition is related
to an aviation phenomenon known as “pilot-induced oscillation,”
or PIO. PIOs are defined as unstable short-period oscillations in
the motion of an aircraft, manifested by the pilot’s own control
input. Spontaneous short-period oscillations are normal, but they
can be catastrophic if the pilot overcompensates for small con-
trol errors in a way that increases the amplitude of these oscil-

lations. PIOs have been simulated using a boundary-avoidance
task (BAT) paradigm (3–5). The BAT paradigm is thought to
gradually increase a pilot’s cognitive workload, arousal, and task
engagement, until cognitive control processes are overwhelmed and
there is a catastrophic control failure, often resulting in a crash.
We recently conducted an investigation of PIOs using a natu-

ralistic BAT paradigm where no feedback was provided (i.e.,
“open-loop”) (6). We identified EEG signatures that discriminated
task difficulty level within a trial and showed that these signatures
were predictive of an upcoming PIO event. The signatures were
identified in a number of EEG frequency bands and spatial to-
pographies, including frontocentral theta activity (4 to 7 Hz), oc-
cipital alpha activity (8 to 15 Hz), and posterior and temporal
gamma band activity (32 to 55 Hz). The spatial and spectral pattern
of the theta activity is consistent with engagement of the anterior
cingulate cortex (ACC), a hub for cognitive control (7, 8). Occipital
alpha, however, has been tied to both arousal and visual selective
attention (9, 10). Activity in the gamma band had topologies sug-
gestive of muscle tension in the neck and head that, although not
strictly cortical in origin, was informative of the upcoming PIO
event. Using a linear decoder to combine this EEG information
across frequency bands yielded the most robust predictor of an
upcoming PIO (6). In addition, these open-loop experiments
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showed correlations between the subject’s pupil diameter and task
difficulty (specifically, increased pupil dilation as the task became
more difficult and there was an increased likelihood of a PIO). This
suggested that the subject’s state of arousal was changing during the
task and there was a correlation between this state and the likeli-
hood of task failure. In general, these open-loop observations are in
line with the right half of the well-known Yerkes–Dodson re-
lationship (11, 12) between arousal and task performance (Fig. 1A).
In this study we investigated whether the performance of

subjects in a BAT could be improved using closed-loop neuro-
feedback that leverages these previously identified EEG signa-
tures predictive of PIOs (Fig. 1). Here we define neurofeedback
broadly, using signals decoded in the EEG bands (0.5 to 55 Hz,
delta, theta, alpha, beta, and gamma bands) that track task-
dependent arousal state. As we observed in the open-loop ex-
periments (6) the signatures we find and use for neurofeedback
include sources in the CNS as well as peripheral nervous system
activity that is picked up in the EEG. We assessed improvement
in performance by whether subjects could “fly” longer in difficult
conditions (narrow boundaries) when veridical neurofeedback is
provided relative to sham feedback or silence (Fig. 1C). The
neurofeedback is based on information that we decode from the
EEG in real-time via brain–computer interface techniques (BCI)
(13) and that we provide to subjects throughout the BAT. Spe-
cifically, feedback is given via headphones in the form of a
loudness-modulated low-rate (60 beats per minute) synthetic
heartbeat. The loudness of the auditory feedback is directly re-
lated to the tracked EEG signatures of task difficulty (i.e., louder
feedback is provided when the level of inferred task-dependent
arousal is high). Our hypothesis was that subjects would entrain
to the low-rate heartbeat when its loudness was increased during
difficult moments in the trial. This would cause a reduction in
arousal, which would shift performance on the task, in line with
the Yerkes–Dodson relationship (Fig. 1 A and B). Indeed, our
results show that subjects show a significant improvement in
their task performance when using the closed-loop neurofeed-
back compared with when no feedback or sham feedback are
provided. Furthermore, analysis of pupillometry and heart-rate
variability (HRV), neither of which is used to construct the
neurofeedback signal, supports the hypothesis that the feedback
is impacting performance by reducing arousal levels, consistent
with models of cognitive control and the right half of the Yerkes–
Dodson relationship (11, 12).

Results
Flight Paradigm. Twenty healthy adults performed a BAT in a
virtual-reality (VR) environment, where they navigated a plane
through courses of rectangular red waypoints (“rings”). Flight
attempts (i.e., trials) were alternately performed in an easy and
hard course (Fig. 2A, Top Left). Every course was a maximum of

90 s long but ended abruptly whenever the pilot missed a ring.
The size of the rings decreased every 30 s, thus increasing task
difficulty. One of three feedback conditions (BCI, sham, or si-
lence) was randomly assigned for every new flight attempt: In the
main condition of interest, BCI, subjects heard audio of a low-
rate synthetic heartbeat that was continuously modulated in
loudness as a function of the level of inferred task-dependent
arousal, as decoded from the EEG. The higher the level of
inferred task-dependent arousal, the louder the feedback, and
vice versa. In the first control condition, silence, no audio was
presented. For the second control condition, sham, the decoder
output was linearly combined in equal parts with random sham
signal (Feedback Conditions). The linear decoder had before
been trained based on spectral features of EEG collected during
10 min of flight attempts in the easy course at the beginning of
the main experimental session (Fig. 2B). Specifically, the de-
coder was trained to discriminate sections of EEG around large
boundaries vs. sections around medium/small boundaries. This
was our proxy for EEG-derived arousal state that we hypothe-
sized would couple to task performance. Subjects were kept blind
with regard to the purpose of the study and the existence of the
sham condition. The key instructions were as follows: “Consider
missing a ring the equivalent of crashing a plane” and “When-
ever you hear heartbeat audio, please try to assume a mental
state where the audio becomes and stays as low in volume as
possible” (see Materials and Methods for further details).

Neurofeedback Improves Flight Performance Under Difficult Conditions.
In accordance with the Yerkes and Dodson law, we found BCI-
based feedback to improve flight performance relative to control
conditions for the unseen, untrained, and more difficult flight
course but not for the easier, previously trained course. This effect
was reflected in a significant interaction between the independent
variables feedback (levels: BCI, sham, and silence) and course
(levels: easy and hard) in an analysis of variance for the normalized
dependent variable flight time (F2,402 = 3.535, P = 0.031, R2 =
0.011). Post hoc t tests for course type hard showed significantly
prolonged normalized flight time for feedback type BCI relative to
both control conditions silence and sham [Fig. 3A; descriptive sta-
tistics for raw flight time; tests on z-scored data; BCI: 46.2 ± 9.7 s
(mean ± SD) vs. silence: 39.0 ± 9.2 s; t17 = −2.903, P = 0.010, R2 =
0.331 and BCI vs. sham: 38.2 ± 7.6 s; t17 = −4.394, P < 0.001, R2 =
0.532]. Flight time with BCI feedback was thus on average increased
by 18.3% (i.e., 7.1 s) over silence where no feedback was provided
and by 21.0% (i.e., 8.0 s) over sham, where 50% of the feedback
signal was randomly generated and the other 50% was true decoder
output (Fig. 3B). No significant difference was found between the
control conditions silence and sham in course type hard or between
any of the three feedback conditions for course type easy (Fig. 3 C
andD). These results are in agreement with our hypothesis, with the
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Fig. 1. Assumptions underlying our hypothesis. (A) If performance decrease during PIO is governed by the Yerkes–Dodson law, then down-regulation of
arousal should improve performance. (B) The locus coeruleus–norepinephrine (LC-NE) system is believed to trigger a switch away from model exploitation to
stochastic exploration, and thus hypothetically cause PIO, if arousal exceeds a threshold while ACC is in a state reflective of low model performance (17).
Lowering arousal should impede this switch to stochastic exploration and thus lower PIO propensity. (C) Subjects typically fail along the way in sufficiently
difficult BATs, but impeding PIOs by down-regulating arousal would hypothetically postpone failure and thus improve task performance.
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pattern of significance remaining unchanged even if corrected
for multiple comparisons using a Holm-based correction (six
comparisons).
The course-specific differences in performance improvement

with BCI feedback could be explained by a difference in the
baseline level of arousal for the two course types: Relative to the
easy course, the unseen, untrained, and more difficult course
would hypothetically be associated with a higher level of arousal
and consequently a higher potential for improvement via BCI-
mediated down-regulation of arousal. We found evidence for
higher task difficulty and arousal for course type hard relative to
course type easy, manifested as significant differences in flight
time (F1,403 = 366.529, P < 0.001, R2 = 0.566), pupil size, heart
rate, and HRV (SI Appendix, Figs. S2–S4). Consistent with our
prediction based on the Yerkes–Dodson relationship, we ob-
served improved flight performance relative to control condi-
tions when subjects were instructed to down-regulate their
arousal based on BCI feedback under difficult conditions.

Higher HRV for Effective BCI Feedback Indicates Lower Arousal. In
the hard course, we found significantly increased normalized
HRV (metric pNN-35 ms) for BCI-based neurofeedback relative

to the control conditions silence and sham [descriptive statistics
for raw percent pNN-35 ms; tests on z-scored data; BCI: 41.8 ±
21.9% (mean ± SD) vs. silence 27.3 ± 19.4%; t13 = −4.514, P <
0.001, R2 = 0.610; BCI vs. sham: 30.6 ± 22.9%; t13 = −4.783, P <
0.001, R2 = 0.638; Fig. 4A]. No significant differences were found
between the control conditions in course hard or between any of
the conditions in course easy (Fig. 4C). The time-domain-based
metric pNN-35 ms measures high-frequency HRV (14). In-
creased high-frequency HRV has been associated with increased
activity of the parasympathetic nervous system along with de-
creased sympathetic nervous system activity and can be inter-
preted as decreasing arousal or stress (15). These results
suggest that the observed improvement in task performance
due to BCI feedback might be causally related to (or at least
coincident with) a decrease in arousal experienced by the
subjects.

Pupil Activity Implicates Locus Coeruleus and ACC Circuitry in
Performance Improvement. Consistent with our prediction that
lowered arousal would improve task performance by modulating
locus coeruleus (LC) activity, we found normalized pupil radius,
a known correlate of LC activity, to be significantly decreased for
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Fig. 2. Setup of experiment and study protocol. (A) Study participants alternately guided a virtual aircraft through an easy or hard course of red rectangular
boundaries (rings). Both courses were a maximum of 90 s long and increased in difficulty over time as ring sizes decreased. Missing a ring ended the flight trial
immediately. Every new flight attempt was randomly assigned one of three feedback conditions. In the main condition (a) BCI, audio feedback from an EEG-
based decoder was presented to the participant (closed-loop experiment). During the two control conditions (b) sham and (c) silence, partly random or no
audio signal was presented, respectively. Participants were instructed to down-regulate their arousal as outlined at the bottom left of the panel. (B) During
initial screening in session 1, only novice participants able to repeatedly fly through 66% of course type easy within 40 min were admitted for the main
experiment in session 2. Session 2 started with 10 min of EEG collection while participants repeatedly attempted to fly through the easy course. The EEG-based
decoder was then trained on these data and subsequently used to generate feedback in the main EEG experiment.
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the effective feedback condition in course type hard, relative to
both control conditions silence and sham [Fig. 4B; descriptive
statistic for raw radii; tests on z-scored data; BCI: 1.6 ± 0.2 mm
(mean ± SD) vs. silence: 1.7 ± 0.2 mm; t12 = 2.980, P = 0.011,
R2 = 0.425 and BCI vs. sham: 1.7 ± 0.2 mm; t12 = 3.198, P = 0.008,
R2 = 0.460]. No significant differences were found between the
control conditions in course type hard or between any conditions
in course type easy (Fig. 4D). Notably, with the rings in the par-
adigm being 2 s apart, these significant effects were only observed
for the time window [1, 2] s after medium-sized rings, but not for
the 1-s time window directly following the rings (SI Appendix,
Fig. S6).

Decoding Task Difficulty from the EEG. Decoding performance in
cross-validation on the training dataset was 79.8 ± 7.2% (mean ±
SD; n = 18) area under the receiver operator characteristics
curve and statistically higher than chance for every participant
(significance level P = 0.01; SI Appendix, Fig. S8). Decoding
performance for delta and theta band was significantly better
than chance, and when projecting the inverted linear decoder
models onto the scalp (forward model) we observed a midfrontal
focus consistent with ACC involvement. Higher-frequency bands
like alpha, beta, and gamma showed higher cross-validated
decoding performance and the associated forward models ei-
ther reflected neural activity, nonneural activity (e.g., electro-
myogram, EMG), or a mix of both. This is consistent with
previous findings (6) where neural activity was found in fronto-
central delta and theta as well as parietal alpha. Similarly, Saproo
et al. (6) also identified gamma activity that seemed to reflect
changes in muscle tension. In accordance with the results from our
preliminary study (n = 3 subjects), cross-validated decoding per-
formance was higher with EEG relative to joystick input.

Discussion
We have shown that neurofeedback can be used to down-
regulate arousal and improve human performance in a de-
manding sensory-motor task in real time. This is in line with our
prediction based on the right half of the Yerkes–Dodson law
(11) and the theory of cognitive control (2). Cognitive control is
a critical element of executive function that interacts with
arousal systems to enable approach–avoidance behavior (16).
When we avoid or “take flight” from a dangerous object, event
and/or boundary, our avoidance response is reflexively in a di-
rection opposite to that of the direction of where we perceive the
danger (e.g., running away from a lion or a fire). The BAT
scenario we study here is more complex in that avoidance of a
boundary in one direction increases proximity to the boundary in
another direction. The fundamental problem the brain is con-
fronted with is one of a balancing act, where avoidance must be
precisely controlled. The challenge is that this must occur in the
presence of high levels of arousal, which are believed to be
forcing the brain to switch from exploiting previously learned
models to stochastic exploration for new models (12, 17). Our
findings in behavior and physiological signals support our hy-
pothesis that the provided neurofeedback decreases arousal, by
impeding this hypothetical switch to model exploration which we
think then leads to the increased task performance.
Importantly, we found evidence in support of our hypothesis

not only in increased task performance with veridical neuro-
feedback but also in significant, concomitant changes in HRV
and pupil size. Higher HRV with BCI feedback relative to
control conditions indicates a lowering of arousal (15), and
smaller pupil size under the same conditions can be interpreted
as LC activity consistent with increased cognitive control (18). It
is noteworthy, that significant effects in pupil size were only
found in the epoch [1, 2] s after medium-sized rings, but not in
the epoch [0, 1] s. We interpret this pattern of pupil changes as

A B

C D

Fig. 3. Flight performance improved with veridical neurofeedback in the hard but not the easy course. (A) Flight time increased significantly relative to both
control conditions sham and silence for course type hard, where sharply elevated levels of arousal are expected. (B) In the hard course, individual flight
performance consistently increased with veridical neurofeedback relative to controls for all except three subjects. (C) For the easy course, for which subjects
were trained and screened and where no strongly elevated arousal was expected, no significant differences were found between any of the conditions. (D)
Individual performance with veridical feedback relative to control conditions in course type easy showed no clear trend for a systematic increase or decrease.
Hinges of boxplots represent first and third quartile and whiskers span from smallest to largest value of the data but reach out no further than 1.5 times the
interquartile range. Numbers over brackets between boxplots represent uncorrected P values of paired t tests. The pattern of significance does not change
after Holm-based correction for six comparisons.
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reduced baseline pupil size and thus reduced tonic LC activity,
along with increased task-related pupil dilation and thus in-
creased phasic LC activity that has been shown to follow correct
task responses in monkeys (12). Overall, this pattern of pupil
activity is consistent with a state of continued exploitation of
previously learned models, high task engagement, high cognitive
control, and high task performance (12, 19). In accordance with
the Yerkes–Dodson law, these effects were only present in the
hard, unseen course where both arousal and task difficulty were
expected to be higher than in the easy course. These findings are
also supported by statistical analysis at a time resolution of 2 s
(included in SI Appendix) showing that veridical feedback
significantly predicted HRV, but only when subjects also heard
the feedback and not in the silence condition. In other words, as
subjects heard the feedback and attempted to down-regulate
their arousal, successfully lowered feedback volume was associ-
ated with increased HRV, that is, a lowering of arousal (14, 15).
In summary, effects in HRV and pupil size, consistent with de-
creased arousal and a brain state of continued model exploita-
tion were found only while veridical neurofeedback was provided
in a difficult task and when task performance improved.
This system improves human performance in a highly demanding

sensory-motor task. Our system works with instantaneous feedback
that affects performance directly and is not neurofeedback training.
The presented system was unobtrusive and did not interfere with
performance at moderate arousal levels. The only other study in
literature where subjects concurrently modulated EEG-based
feedback found increased performance in a sustained visual at-
tention task under low levels of arousal lasting 120 min (20). A
number of other studies reported that separate, dedicated neuro-
feedback training improved subsequent task performance. Using
such approaches, fMRI-based studies showed improved perfor-
mance in grip force control (21) or working memory (22), and

EEG-based studies showed improved cognitive (23, 24) or musical
performance (25). Our results, however, are not neurofeedback
training and instead represent the effect of providing instantaneous
neurofeedback on ongoing task performance. For example, we have
no evidence that the feedback to the subject affects their perfor-
mance after the feedback is removed (i.e., there is no training ef-
fect). This is clear because we intermix neurofeedback trials with
silence and sham conditions and none of the effects in terms of
improved performance are seen in those nonveridical feedback
trials. A recent review on neurofeedback (26) points out that fail-
ures to replicate findings from promising preliminary studies in
large clinical trials emphasize the importance of understanding the
physiological mechanisms that underlie neurofeedback approaches.
We address this problem by complementing our report on a brain–
behavior relationship, with supporting evidence across multiple
conditions and physiological signals. Finally, we contrast our ap-
proach against passive BCIs (27), which aim to improve human–
machine interaction by allowing a machine to unobtrusively adapt
to covert aspects of a user state like, for example, workload, sur-
prise, or fatigue. In one particularly interesting approach, the au-
thors attempted to infer workload in eight subjects in real time and
activated machine assistance in a difficult visuomotor task whenever
workload was high (28). This improved performance but required
the machine to know intricacies and successful control strategies for
the task. Our approach requires no knowledge of task, environ-
ment, or optimal control input but instead directly improves human
performance. Given that passive BCIs require no active attention
by the user, both approaches can be used concurrently.
A surprising, or at the very least counterintuitive, finding of

our overall results is that subjects performed better even though
the veridical BCI feedback might be interpreted as a dual task
(i.e. there was the task of navigating the simulated plane and the
simultaneous task of maintaining a brain state that reduced the
volume of the heartbeat sound). The silent version of the task did
not have the subject regulating the heartbeat volume and
therefore could be viewed as a single task. It is well-known that
dual-task conditions frequently result in reduced performance
relative to executing the tasks individually. One hypothesis is that
there is a cognitive or response-selection bottleneck (29, 30) that
puts limits on the two tasks, although some have shown that with
training very efficient time multiplexing between tasks is possible
so that the effect on performance is minimal (31). The two tasks
in our experiment are somewhat orthogonal in that only the vi-
sual flight task requires a sensory-motor response mapping, while
the trials with the heartbeat sound feedback require no responses
but internal modulation by the subject of their brain state.
Given the somewhat counterintuitive nature of our findings in

this context, it is important to consider an alternative explanation.
For example, perhaps the subjects were not doing the second task
at all—they were not modulating their brain state in a way that
reduced arousal, and instead the quality of the feedback sound itself
was different in the two feedback conditions and that reduced
arousal and explained the performance gain. The sham condition
we implemented was meant to control for that; however, perhaps
there was a systematic difference in the sham vs. veridical BCI
feedback that promoted a reduced arousal in the veridical BCI
feedback condition, absent any direct modulation or control by the
subject. If subjects completely ignored instructions to regulate their
brain state in both the sham and veridical BCI feedback conditions,
and for the veridical BCI conditions the mean loudness and vari-
ation in heartbeat volume was more conducive to a low arousal
state (i.e., was not as loud and varied less) then this might explain
an improved performance in the veridical BCI case. To test this
possibility, we did an additional analysis, comparing the average
heartbeat volume and its variation for the sham and BCI conditions
(see SI Appendix for details). In the parts of the course where
feedback improved performance and the task was most difficult
(hard course, medium and small rings) we found no significant

A B

C D

Fig. 4. Significant changes in pupil size and HRV were observed in condition
BCI relative to control conditions during course type hard. (A) For course
type hard, HRV was significantly higher in condition BCI relative to both
control conditions, while (B) normalized pupil size was significantly lower in
condition BCI relative to both control conditions. For course type easy no
significant effects were found for (C) HRV or (D) pupil size. Hinges of box-
plots represent first and third quartile and whiskers span from smallest to
largest value of the data but reach out no further than 1.5 times the
interquartile range. Numbers over brackets between boxplots represent
uncorrected P values of paired t tests. Holm-based correction for six com-
parisons does not change the pattern of significance for HRV but elevates
the P value of the paired comparison of normalized pupil size between
conditions silence and BCI from P = 0.011 to PHolm = 0.057.
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difference in the average volume of the feedback between sham
and veridical BCI (SI Appendix, Fig. S10). In fact, the variation of
the heartbeat volume was significantly greater in the veridical BCI
feedback conditions (SI Appendix, Fig. S11), which is counter to the
above hypothesis that a more calming and stable heartbeat sound,
irrespective of BCI control by the subject, could account for the
difference in performance between the three conditions. The above
findings, together with the evidence that the veridical BCI signal is
substantially more correlated with sound volume in condition BCI
than it is for condition sham (SI Appendix, Fig. S12) and that the
veridical BCI conditions result in higher HRV and smaller pupil
size indicative of lower arousal and higher cognitive control,
respectively, all point to the conclusion that although one may
interpret the feedback conditions as dual-task, the subjects’
modulation of their brain state to reduce heartbeat volume does
not interfere with the primary task of navigating the plane. Instead,
we have strong evidence that active self-modulation of subject’s
brain state is at the core of the performance improvement over
silent and sham conditions.
There are several noteworthy limitations in the broad in-

terpretation of our results due to specific choices in experimental
design and the implemented closed-loop system. First is that our
investigation relies on EEG and that subjects needed to be
screened to meet a minimum task performance level so that
enough EEG could be collected to train the decoder. A more
complex experimental design, where task difficulty is additionally
adjusted to the individual skill level of the recruit, may have
allowed us to admit additional subjects into this EEG study.
After careful consideration during experimental design, we
opted for the present approach since we thought it represented a
good balance between complexity of setup and statistical analy-
ses, logistic feasibility, and experimental control. Another limi-
tation of EEG is that its signal-to-noise ratio can decrease with
increased environmental or biological noise such as muscle ac-
tivity in the face or neck. One participant changed their posture
in the middle of the experiment, introducing so much muscle
artifacts into the EEG that the dataset became unusable and was
excluded from analysis. For participant S10, decoder perfor-
mance was unusually low at 66.7% area under the curve com-
pared with an average of 81.7 ± 7.2% for all others. The subject
was not excluded but later presented with low performance in
the BCI condition (Fig. 3B). Conceivably, degraded EEG signal
quality could lower feedback efficacy. While there are promising
approaches to improve EEG signal quality in the presence of
noise (32), it is clear that using EEG in real-world applications
could be challenging.
Another limitation is that even though we implemented our

BAT paradigm in VR, it is still a simplified version of what one
might expect in a real flight situation that would generate a PIO.
For example, absent was simulated instrumentation that the pilot
would direct their attention to when trending toward to a PIO.
This increased attention toward the information in the in-
strumentation is thought to be a source of the increased cogni-
tive workload (3–5) that generates a PIO (3–5). Our experiments
assume that as flight difficulty increases during a trial, arousal
levels increase and that this shifts the subject on the Yerkes–
Dodson curve. We therefore do not directly address questions
related to cognitive workload; rather, our work is specific to
arousal changes that couple to performance.
Our work also investigated only increases in arousal (i.e., the

right side of the Yerkes–Dodson curve) and how arousal can be
reduced to reach an operating point that optimizes task perfor-
mance. The left side of the Yerkes–Dodson curve is also of
practical interest, since it addresses cases of low arousal and
fatigue that are also detrimental to task performance. Examples
would include drowsiness, where one would want to increase
arousal levels to improve task performance. Although our BAT
experiments do not consider these low arousal states, we believe

our approach potentially can be generalized to regulate arousal
across the full range of the Yerkes–Dodson curve.
The collected evidence across conditions and multiple signal

modalities furthered our understanding of the mechanisms un-
derlying the efficacy of the presented approach and suggests that
this approach should generalize to other task domains where
humans are forced to behave according to internal models of the
environment under high arousal. Driving under difficult condi-
tions, as another continuous visuomotor task, would be an ob-
vious example. From a translational perspective it would be a
great advantage if the presented feedback effect could be
achieved based on nonneural signals like from joystick or
steering wheel input alone, since such signals are easy to record
in a real-world environment like in a car. For the present ex-
periment, it seemed clear that it was best to base our decoder on
EEG since a preliminary study (n = 3) had shown that neither
joystick nor EMG derived from face, neck, or the right lower arm
achieved higher decoding performance. In fact, the decoding
performance obtained based on facial and neck EMG was not
statistically better than chance. Our results here confirm our
previous observation, where decoding performance was higher
based on EEG than when joystick input was used as the un-
derlying signal. In terms of potential applications outside hu-
man–machine interaction, the demonstrated approach of
administering neurofeedback, while monitoring conformity with
experimental hypotheses across conditions and multiple signal
modalities, could serve as a model to enable targeted treatment
in mental illness, where there is increasing evidence that cogni-
tive and/or emotion regulation could lead to clinically significant
improvement (33).

Materials and Methods
Subjects. We recruited 40 right-handed, neurologically normal adults in New
York City [age 26.2 ± 4.4 y (mean ± SD); 23 female]. Only subjects who reported
normal hearing, normal vision, or vision that was corrected to normal with
contact lenses were included. We excluded volunteers who reported using
medication that might influence the experiment. Participants were compen-
sated with $20 per hour. After screening, 13 subjects were excluded; 12 sub-
jects’ performance was too low and 1 subject was nonnovice to the task. Seven
more could not enroll in the main session for other reasons (three experienced
VR sickness; for two, technical problems prohibited recording; one subject’s
hairstyle made it impossible to record EEG of sufficient quality; one did not
have time for the main experiment after all). Of 20 subjects (10 female) who
were enrolled in the main study, two were excluded from analysis as one of
them had to leave after less than half the session and the other changed their
posture in the middle of the experiment, introducing so many muscle artifacts
that the dataset became unusable, leaving data from 18 subjects for analysis
(age 24.9 ± 3.6 y; eight female). Our experimental design used within-subject
comparison, and thus no randomization was used to assign subjects. The se-
quence of the three main conditions of interest, silence, sham, and BCI, in the
main experiment was random, but we made sure that every condition occurred
twice within six consecutive flight attempts. This study was approved by the
institutional review board at Columbia University and written informed con-
sent was obtained from all participants before screening and the main
experimental sessions.

BAT. Participants were instructed to fly a virtual plane through two different
courses (easy and hard) of red boundaries (rings or boxes; Fig. 2A, Top Left).
The vertical position of the rings was arranged along a trajectory computed
as a sum of three sines. With the plane moving at a constant velocity and
∼2 s of flight time between rings, both courses were a maximum of 90 s long
while the size of the rings decreased every 30 s, thus increasing difficulty.
Consequently, courses consisted of three segments of large, medium, and
small rings. Flight attempts ended abruptly whenever a participant missed a
single ring, after which the next flight attempt would be started. Courses
easy and hard each had a different, but fixed, trajectory. Boundary sizes
were overall smaller in the hard course, rendering it more difficult. Partici-
pants controlled only the pitch of the virtual aircraft via right-hand joystick
input (A-10C HOTAS Warthog; Thrustmaster). Having a single degree of
freedom (airplane pitch) was done to reduce the complexity of the experi-
ment while still enabling a bit of realism. Joystick input was delayed by 0.2 s
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and nonlinearly dampened to more closely resemble the more challenging
flight characteristics of a real aircraft and consequently also increase the
probability for PIOs to occur (5, 6). VR was used as the presentation mode
since the looming of the glide boxes and their position was perceptually
augmented by the immersiveness and binocular/stereo head-mounted dis-
play, thus enabling strong modulation of arousal levels.

Feedback Conditions. Overall three different audio-based feedback condi-
tions—silence, sham, and BCI—were used throughout this study: In the first
condition, silence, no audio was presented (i.e., Ω = 0 in Eq. 1). The silent
condition was important for both being an important control condition for
the experiment (i.e., critical for showing that veridical neurofeedback im-
proved performance over no neurofeedback at all) while also enabling
additional analysis related to how the decoder output tracked other vari-
ables (HRV and pupil dilation) when subjects heard the decoder output.

The fixed combination of silence and the easy course were used during
screening in session 1 and at the beginning of session 2 during 10 min of
data collection while participants attempted flights. Based on these 10 min
of data, a linear subject-specific decoder was trained to translate spon-
taneous EEG activity into an index of inferred task-dependent arousal
between 0 and 100%. For condition BCI this index of inferred arousal was
temporally smoothed using a sliding window that was 5 s wide and in-
stantaneously mapped onto the volume of low-rate (60 beats per min)
synthetic heartbeat audio signal. That way, higher task difficulty and thus
presumably higher task-dependent arousal corresponded to louder audio,
and vice versa (i.e., Ω = 1 and λ = 1 in Eq. 1). For condition sham, the index
of inferred task-dependent arousal was linearly combined with a ran-
domly generated signal (AR_BCI; range also 0 to 100%), such that Ω =
1 and λ = 0.5 in Eq. 1. More specifically, this random signal was generated
as novelty observations from an autoregressive model (Sham Feedback).
The average sound pressure levels for minimum and maximum loudness
levels of feedback measured from the headphones were 59.6 dB and
71.1 dB, respectively (measured via application Decibel X, 6.0 on iPhone 7,
iOS 11.0.2). In the main part of the study, the closed-loop experiment (Fig.
2B), participants alternately attempted flights in courses easy and hard,
while one of the three feedback conditions (BCI, sham, or silence) was
assigned randomly for every new flight attempt. Every feedback condi-
tion occurred twice in six flight attempts. In total, 24 flight attempts were
recorded for every participant in the closed-loop block of the experiment.
BCI was the main condition of interest, while sham and silence served as
control conditions.

Feedback Audio Volume  =  Ω*ðλ*BCI+ ð1− λÞ*AR BCIÞ [1]

Our rationale for using the loudness of a low-rate heartbeat as the mode for
feedback was based on both the literature as well as pilot experiments
evaluating othermodes of feedback. The relationship between arousal, heart
rate, and the role of the LC in regulating both cortical arousal and para-
sympathetic neurons that control heart rate has been established (34) and
thus pointed us to using low-rate heartbeat as a mode of feedback to pre-
sent to the subject. We also conducted pilot experiments to evaluate other
modes for presenting the neurofeedback. Specifically, we tested visual
presentation of neurofeedback via a vertical temperature gauge that
changed in height and color (green to red) as the neurofeedback output
increases. We also tested a mode of feedback whereby we adaptively ad-
justed the control/response parameters of the joystick, via software, such
that high neurofeedback reduced the gain between the stick movement and
movement of the simulated aircraft. For both the visual feedback and the
control-based feedback, subjects performed substantially worse with neu-
rofeedback than in the silent case. Given the literature and these pilot ex-
periments, we chose the auditory feedback of low-rate heartbeats for
our experiments.

Instruction. Participants were instructed based on slides and further in-
structions were read by the experimenter before a new experimental block
was started. We explained that the purpose of this study was to investigate
brain activity that was elicited by the BAT paradigm and that audio feedback
was provided based on the subject’s current brain activity. We kept partic-
ipants blind to our aim of investigating flight performance differences and
the existence of the condition sham. The key instructions were as follows:
“Go through every box!,” “Consider missing a box the equivalent of crash-
ing a plane,” and “Whenever you hear heartbeat audio, please try to as-
sume a mental state where the audio becomes and stays as low in volume
as possible.”

Screening. Before themain EEG experiment, all 40 recruits were admitted to a
training and screening session where no EEGwas recorded. This was done for
two reasons. The first was to ensure a comparable baseline level of task
proficiency across subjects and the second to make sure subjects were able to
fly far enough through the easy course so that later in the main experiment
enough EEG could be collected to calibrate the BCI. For a maximum of 40 min
subjects were allowed to make flight attempts in the easy course, while no
feedback was provided (condition silence). Subjects wore headphones with
noise-canceling activated and we recorded joystick input and pupil diameter
during flight attempts. The threshold criterion for passing screening was met
by completing or exceeding 66% of the 90-s course in three out of four
consecutive attempts. One subject was found to be nonnovice to the task and
was thus excluded.

Decoder for Real-Time Feedback. Based on EEG collected during 10 min of
flight attempts in course easy at the beginning of session 2, we trained a
subject-specific, multivariate linear model that indexed inferred task-
dependent arousal between 0 and 100%, so that a high index value corre-
sponded to high task-dependent arousal (thus presumably also low cognitive
control), and vice versa. The setup was initially treated as binary classification
problem. Class 1 was represented by EEG data collected during the first
segment of the flight course where boundary size was largest and task
difficulty was lowest. Class 2 was represented by EEG data collected during
the second and third segments of the course, where boundary sizes were
smaller and task difficulty was consequently higher. Every 2-s epoch of EEG
between rings was treated as a separate observation. The linear decoding
model was then obtained in two steps, where, first, linear projections from
EEG space into a six-dimensional surrogate subspace were computed via filter
bank common spatial patterns (FBCSP) (35). These subspace projections were
computed separately for every one of the five frequency bands 0.5 to 4, 4 to
8, 8 to 15, 15 to 24, and 24 to 50 Hz, such that variance-based between-class
separability was maximized. The subspace projections were attained by first
computing eigendecomposition of Mc in Eq. 2 separately for class 1 (c = 1)
and class 2 (c = 2):

Mc = ~Cc

�
~Cð3−cÞ + αI

�−1
, [2]

where ~Cc was the channel covariance matrix (size 64 × 64) for class c,
α= 10−10 was a Tikhonov regularization parameter (36) obtained empiri-
cally based on previously collected data (6), and I was the identity matrix
(size 64 × 64). For every band, and for every class c = {1, 2}, only the three
eigenvectors of Mc that were associated with the largest eigenvalues
were retained. Thus, a projection matrix of size 64 × 6 was obtained for
every frequency band, which overall resulted in a 30-dimensional feature
space (64 EEG channels; 6 eigenvectors per band × 5 frequency-bands →
30 features). In step two, this 30-dimensional feature space after FBCSP
processing was projected down to a scalar dimension using shrinkage
regularized linear discriminant analysis (LDA) (37). A scaling parameter
was obtained by normalizing the LDA output for all training data and
stored with the model so that real-time output could be scaled accord-
ingly. The decoder output was subjected to temporal smoothing using a
window that was 5 s wide to reinforce neural activity and to suppress
noise and spurious fluctuations.

Sham Feedback. To generate sham feedback in real time, the feedback which
was usually only based on EEG (BCI) was linearly combined with simulated
novelty observations from an autoregressive (AR) model (see Eq. 1, where
the novelty observation AR_BCI is generated according to Eq. 3; cf. ref. 38).
The AR model had been trained based on nine datasets from a previous
study where EEG was recorded while study participants attempted to fly
through the same two courses as in this study but in the absence of closed-
loop feedback (6). For AR model setup, FBCSP had first been trained for
every single subject on all of the EEG data of every single subject. Sub-
sequently, the individual FBCSP decoder models were applied to the EEG
data of the same subject to obtain subject-specific time series of an index of
inferred task-dependent arousal at a sampling rate of 16 Hz. Then, AR
models of orders 5 to 80 (in steps of 5) were fit separately for every subject’s
time series based on Burg’s method (39). AR model order P = 40 yielded the
lowest average Bayesian information criterion score across participants and
was thus selected for the final model. The coefficients for the final AR model
in Eq. 3, φ1 . . . φp along with constant offset c were determined by averaging
coefficients and offset of subject-specific models of order P = 40 across
participants. For real-time generation of AR model-based sham signal, the
model was initialized with zeros and a random noise term «t, drawn from a
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Gaussian distribution, was added for every prediction. No initialization ef-
fects were apparent latest after 30 s but the sham generator typically ran
more than 5 min before its signal was provided as part of sham feedback.

Xt = c+
Xp

k=1

�
φk*Xt=1

�
+ «t [3]

Setup and Signal Acquisition. Subjects were seated comfortably inside a
Faraday cage, wearing a head-mounted VR display (Oculus Rift DK2; Oculus
VR LLC) and noise-canceling headphones (QuietComfort 20; Bose Corp.). The
3D paradigm was designed using NEDE (40), a scripting framework to design
experiments in virtual 3D environments based on Unity (Unity Technologies).
We used the software lab streaming layer (41) to synchronize acquisition of
signals of different sampling rates (fs). In session 1 we recorded joystick input
(fs = 60 Hz), pupil radius, and eye gaze from an eye tracker within the head-
mounted headset (fs = 60 Hz; SensoMotoric Instruments), paradigm markers,
and flight trajectories (fs = 75 Hz). In session 2, we additionally recorded
64 channels of EEG, the electrocardiogram from two electrodes placed on
the thorax, electrodermal activity from two electrodes placed on the inside
of the left hand, and respiration from a belt around the thorax (fs = 2,048 Hz,
ActiveTwo biosignal amplifier; BioSemi B.V.).

Statistical Analysis. The dependent variable flight time was normalized to
zero mean and unit variance within each subject to account for individual
differences, before a linear model was fitted using ordinary least squares
regression in R (Version 3.3.3) (42) using categorical and continuous pre-
dictors including course difficulty (easy and hard), feedback condition (si-
lence, sham, and BCI), and the interaction of the two. Further predictors
were subject demographics including age, gender, hours slept the previous
night, average weekly gaming hours over the last 3 y, number of screening
trials, and subject-derived continuous signals related to power of the joystick
input signal, heart rate, BCI output, and pupil size. To satisfy the requirement
for normality of the residuals, we iteratively removed outliers by visual in-
spection of diagnostic plots in R, including scatter plots of fits vs. residuals, QQ

plots, leverages vs. residual plots relative to Cook’s distance, and scale location
plots, until the residuals met statistically tested requirements (R package
GVLMA, version 1.0.0.2; ref. 43). Subsequently, the previously fitted linear
model was subjected to analysis of variance. Post hoc tests for the difference of
means were computed using paired, two-sided Student’s t tests, where equal
variance was not assumed. Flight length within subject was collapsed for post
hoc tests based on the median. Pupil size and HRV were extracted from these
exact flight attempts of median length. Between-course differences were
preserved in the normalization of flight time, enabling analysis of the in-
teraction of course and feedback condition. Pupil and HRV were additionally
normalized within-course as our main interest was in comparing these physi-
ological signals between feedback conditions. Regardless of which type of
normalization is used, the patterns of significance remain unchanged. If not
stated otherwise, descriptive statistics are reported as mean ± SD. Statistical
effects were considered significant for P < 0.05. We encourage interpreting
uncorrected P values of post hoc tests relative to our specific hypotheses but
also report results of Holm-based correction for reference. Sample size was
determined a priori to be 20 participants assuming partial η2 = 0.5, α = 0.05,
and 1-β = 0.95 for the two main effects course and condition and their in-
teraction [software G*Power 3.1.9.2 (44); University of Düsseldorf, Germany].

Data and Materials Availability. All data needed to reproduce the findings in
this paper are publicly available via IEEE DataPort, dx.doi.org/10.21227/rn3e-
bp31 (45).
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